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Limit Cycles of Planar Quadratic Differential Equations

D. E. Koditschek and K. S. Narendra

Introduction:

2> Since Hilbert posed the problem of systematically counting and locating the

limit cycles of polynomial systems on the plane in 1900, much effort has been

expended in its investigation. A large body of literature -- chiefly by Chinese

and Soviet authors -- has addressed this question in the context of differential

equations whose field is specified by quadratic polynomials. Ifi his paper

.3 considex the class of quadratic differential equations which admit a

unique equilibrium state, and establish sufficient conditions for the existence

and uniqueness of limit cycles. The work is based upon insights and techniques

developed in an earlier analysis of such systems [1motivated by questions from

mathematical control theory.

Until the fifties, work on quadratic systems chiefly concerned the existence

of a center. In 1952, Bautin [2] showed that a given equilibrium state can

support as many as but no more than three limit cycles under a quadratic field.

Three years later, a paper by Petrovskii and Landis [3] purported to show that a

quadratic system could support no more than three cycles on the entire plane.

Although this result was called into question by several researchers (and the

authors later acknowledged an error in the proof [4) it apparently inspired a

number of attempts over the next decade to complete the Hilbert program for quad-

ratic differential equations [5,6,7]. Since Coppel's useful survey [8], to our

knowledge there have been only two contributions to this problem. Perko [9] has

demonstrated the existence of limit cycles for a certain class of quadratic sys-

tems, and, recently, Shi Songling [10] has presented a quadratic system which appar-

ently has four limit cycles, settling the question of the validity of [3] negatively.

Thus, the Sixteenth Hilbert Problem remains unsolved even for quadratic system.
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By a "quadratic system' is meant the differential equation

Sx x (1)

where AG,H It (and x Gx denotes the scalar product of the vectors x and

2
Gx e R ). We adopt the convention

Our results may be summarized briefly as follows. In section 2 it is shown (Lemma 1)

that any quadratic system with a unique equilibrium state may be written in the

form

Tx +c xDx (2)

2 2x2
where c e R D E R and (Lemma 2) that the global boundedness of all solutions

r

depends upon the spectrum of the pencil A + UD, when V takes values in the range

V, of a specified nonlinear functional. In section 3, Theorem 2 establishes the

existence of limit cycles based upon the spectrum of A and A + UD as an easy

extension of the previous results. Theorem 3, in section 3, uses a functional

specifying the eigenvalues of A + UD to demonstrate that such systems have only

one limit cycle.

2. Preliminary Discussion of Techniques:

As mentioned earlier, the techniques of [1] are used extensively in this

paper, and are introduced here for ease of exposition. We will use the follow-

2 T
*.ing notation throughout the paper: if x, y c R , then x y denotes the scalar

product of x and y; ixty denotes the determinant of the array formed by the""" I 0 -1

coordinates of x and y. The skew symmetric matrix J - represents a 90

rotation and the orthogonal complement of x is denoted by x Jx. We note that

'

l . q. 5q1.V
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T TIx y x Y , y x.

A line through the origin containing x is denoted <x> - {y:y = ax, a C t).

If A t Wx, the symmetric part of A is denoted A.- 1/2[A + AT]. If A is singular

T 2
it can be written as the outer product A - ab where a, b E £t . The zeros of the

T T 2
quadratic form x Ax x Aax then lie on <a1>u<b1 >. Conversely, if for some a £ ft

TT 2
x Ax is zero on <aI> then A -ab I, for some b R 2

By limiting attention to quadratic systems with a single equilibrium state,

the structure of (1) is greatly simplified. This is a consequence of the fact

that A and B are homogeneous polynomials in x, hence map subspaces of R2 into

subspaces.

Lemma 1: If A is bijective then system (1) has a unique equilibrium state only
82 E2x2T

if there exists a c eR and a D R such that B(x) - cTxDx.
Proof: If for some X E R and x0  2 - x 0  x0 ia

, 0  0

equilibrium state of system (1). Hence, we require that lAx, B(x)l - 0 imply

B(x) - 0 for any x # 0. Since I Ax,B(x)I - xl 3q(x 2/x1), where q is a cubic

polynomial in x2/xl, there exists at least one real zero of q, (say vO). Hence
1 0

the system has a unique equilibrium state only if B - 0 on <[ V This, in turn,

Timplies that both quadratic forms in B share a common zero line or G -[cd 1lt
d I

anT 2. 1 1, we have theH - [cd2 TI where c and d1,d2  . Defining D [dT

desired result.

Since it has been shown [8] that no limit cycles of (1) may occur unless the

linear part of the field has complex conjugate eigenvalues, Lemma 1 achieves an

immediate simplification of the problem. Any quadratic system with a unique equi-

librium state capable of supporting a limit cycle must admit the expression given

in (2).

Representing a quadratic system In the form (2) affords analysis by well known

methods of linear algebra. The following lemma relates the properties of the

pencil A + MD to the interaction of the quadratic and linear part of the field in

(2), providing the basis for much of our global analysis.
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Le-ma 2: For any matrices A,D t and any x e if i1(x) -_ is
Dxx

: defined, then x is an eigenvector of the pencil A + U(x)D with corresponding

eigenvalue X(x) A - D,x "

-' w ~ Proof.: Define a~x) A JAx,xI and 6(x) A IDx,xI. Since I[6A-aD]xxI - 8IAx,xI

l- ,x1 - 0 for all x e t 2  it follows *hat 18+- 5D]x - cx)x for some real valued

function n. But x T xn - x [6A-,aD]x IzAx xTDx l[x'jTx][Ax.Dx]1 _ -x TxAxDxI
funcionr~. ut - 1  - xTJAx sT~x

Hence n(x) - -JAx,DxI and the result follows. 0

Corollary 2.1: Let A have complex-conjugate eigenvalues. If the pencil A + OD

is bounded and non-singular then system (2) has a unique equilibrium state at the

origin.

Proof: If A has no real eigenvectors then p(x) cannot be bounded unless ID,xI

is sign definite - i.e. D has no real eigenvectors. According to Lema 2

A + ID is nonsingular if X(x) 0 0; since IDx,x1 is sign definite, this is equivalent

to the condition IAx,DxI is sign definite. The latter assures that IAx,B(x)I = 0

only on <c > where B = 0. Thus the origin is the unique equilibrium state. 0

Corollary 2.2: Let A have coplex-conjugate sigenvalues. If the pencil A + UD

is bounded and has negative real eigenvalues over the range of p(x) then system (2)

has no unbounded solutions.

Proof: As in the previous corollary the fact that U is bounded imediately implies

that D has complex-conjugate eigonvalues. If, additionally, the pencil has a

spectrum on the left half of the real line in C, then the sign of JAx,DxJ mustI i agree wibtesigndfp iefr I Dx,xJ .• ewl now interpret thssign agreement

geometrically to dim, that the spiral curve defined by a single loop of the linear
trajectory ti0 siWg a efi itv-invIrrat region in the phase plane, arbitrarily

far from the origin.

r ' i . .*. . . .'*",;' ... , .' - ". . - "- . " . , . : ' - - --. . . . '. "." . ,
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Choose a point, y, on <c> whose sign is opposite to the sign of the real

A tDy
part of the eigenvalues of D, say on the positive ray. Let A - {et It e [Ot ];

et Dy _ yy; 0 < < 1} be a complete spiral loop and let A {4yIC e [Y,1]} Join its

end-points as depicted in Figure 1.

The normal to the curve at any

point x e A lies in CJft> and since

po - DxxIJDx is either interior

directed or exterior directed, de-

pending upon whether IDx,xj is

negative or positive, respectively. Ax ,fJDx

With no loss of generality, we assume

I Dx,xI < 0, hence JDx is the interior

directed normal to A at x. Similarly,

- Jy is the interior directed normal to

4,
.A.for any y e A. It now suffices to

T 'Figure 1
show that f (x)JDx > 0 for x z A,

T
and f (y)Jy > 0 for y e A.

Expanding the first inequality, we have

T T T T T T T
f JDx x [A + cxD]1JDxinx AJDx

" IDx,AxI -IAx,DxI > 0

2
for all x e I 2 . Expanding the second inequality, we have

V T T T T T
f TJy --y Tf R -y TJAy -c Ty y TJMy

,:. ~~- -J.Ay,yj - cY Y
T

hence, because c y > 0 for y e A, and IDy,yI < 0, the desired inequality holds when

the second term dominates the first term far enough away from the origin.

-.. !]
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Corollary 2.3: Let A have complex conjugate eigenvalues. If the pencil A + UD

is bounded and has positive real eigenvalues over the range of P(x), then the

system (2) has unbounded solutions for every initial condition outside a compact

neighborhood of the origin.

Proof: Let y be a point on <c> whose sign is the same as the sign of the real

part of the eigenvalues of D, say on the negative ray. Let A and A be as in

the proof of corollary 2.2, depicted in Figure 1. Assume again with no loss of

generality that JDx is the interior directed normal to A at x and Jy the interior

T T
normal to A for y e A. We need to show that fTDx < 0 for x c A and f Jy < 0 for

y c A. Since IAxDxI has opposite sign to lD,xl under the assumption that the

pencil has positive real eigenvalues, the first inequality follows for every spiral

loop A. The second inequality holds on A outside of the last loop for which

T yTJ
lyc YI is less than the constant T ~

y JDy
The reader should observe that the conditions of these corollaries may be

tested using standard computations involving the elements of A and D as established

in the proofs. To suomarze, the condition that a matrix, M E , have complex

conjugate eigenvalues is equivalent to the condition that IMx, x never vanish on

i , or, equivalently, that [JI]a be a positive or negative definite matrix. If

A has complex conjugate eigenvalues, then P(x) is bounded if and only if JDx,x

has no zeros, or, equivalently, D has complex conjugate eigenvalues as well.

Under these conditions the sign definiteness of X(x) depends entirely upon the

sign definiteness of Ax.DxI - IDIID-1 Ax,x, hence, upon whether D 1A has complex

2W -l T T T
conjugate eigenvalues, or, .using the identity in a~ x , D - J D J, whether [D JA]

is a positive or.negative definite matrix.

It Is worth noting, in passing, that the conditions for the boundedness of

system (2) resulting from Lamma 2 and its corollaries may be extended to cover

d * . % .•o .- o- .. o. .. . -.. - o . o- ... . .. • .o
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any planar quadratic system (1). Earlier work [1],[11], [12] has established
that homogeneous quadratic systems which may not be written in the form cTxDx

must be unstable. It may be shown [],[13], in consequence, that system (1) must

have unbounded solutions if it cannot be written in the form (2). Imposing the

added condition that the linear part of the field not be unstable, and adjusting

for special cases permits the following characterization of any globally asymp-

totically stable quadratic differential equation.

Theorem 1 lKoditschek and Narendra [111): System (1) is globally asymptotically

stable if and only if

(i) The eigenvalues of A have non-positive real part;

2 2x2 T
(ii) There exist a c E and D C such that B(x)- c x ;

Ciii) The pencil A + (x)D, where p(x) . - J has non-posiive
2

eigenvalues for all x c R ; is unbounded, if ever, only on an eigenvector of A

in the null space of D with IAI A 0; is singular on at nost a unique line which

coincides with <cI> iff IAI A 0.

In fact, according to [13 ], conditions (ii) and (iii) of this theorem (if we relax

the stipulation that JAI 0 when the pencil is unbounded) are necessary and sufficient

for the boundedness of solutions to any quadratic system (1) as well.

However, in the sequel, we will confine our attention to quadratic systems

of the form (2), and, specifically, those guaranteed by Corollary 2.1 to have a

single equilibrium state.

3. Existence and Uniqueness of Limit Cycles:

We nov apply the techniques developed in the previous section to the subject

proper - an account of the limit cycles of system (2). While those results will

be seen to establish the existence conditions directly, the proof of uniqueness

involves further development.

e ,According to the results of Lyapunov, the local stability behavior of system

(2) is entirely determined by the linear part of the field when the matrix A has

A'A

.1.
i.-.:.................... . . .
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eigenvalues with non-zero real part. On the other hand, the global arguments of

Corollaries 2.2 and 2.3 depend upon the spectrum of the pencil A + pD. Using the

latter result to guarantee boundedness, and assuming local instability by the

former argument, we take advantage of the special nature of limit sets of planar

dynamical systems established by the Poincar'-Bendixson Theorem to conclude that

a limit cycle must exist.

Theorem 2: System (2) has a limit cycle if

(i) the matrix A has complex conjugate eigenvalues with non-zero real parts

and (ii) the pencil A + PD is bounded with non-zero eigenvalues opposite in sign

to the real part of the eigenvalues of A over the range of v(x).

Proof: Assume that (I) holds, and the eigenvalues of A have positive real parts.

Then the origin is totally unstable, hence for some positive definite symmetric

2 T
matrix, P, K - (xix Px < y} for any y > 0 is a positive invariant set of system (2).

If A + P(x)D is bounded with non-zero eigenvalues, then the origin is the sole

critical point of system (2), according to Corollary 2.1. By Corollary 2.2, if the

egenvalues of A + p(x)D are negative, then all solutions of (2) are bounded: in

particular, the Jordan Curve AuA bounds a positive-invariant set, J, containing the

origin. Thus J - (xTpx < y} is a compact positive-invariant set, free of critical

points. In consequence of the Poincarg-Bendixson Theorem, the positive limit set

T
of a trajectory in J - (x Px < y} must be a limit cycle [14, p. 232, The. 9.3].

If the elgenvakues of A have negative real part and the eigenvalues of A + p(x)D

are positive, an identical argument concerning negative limit sets using Corollary

2.3 will establish the existence of a limit cycle. 0

While the question of necessity is not formally addressed in this paper,

it is useful to remark upon the existence of limit cycles when the conditions of
Theorem 2 are not met. Assuming (ii), Condition (I) is certainly necessary for

systems of the form (2) to support a limit cycle: Conpel [8] hi i shown that A

mast have complex conjugate eigenvalue8; when A has purb' L.ginary eigenvalues

W
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and A + pj(x)D has negative eigenvalues Theorem 1 guarantees global asymptotic

stability, while a similar argument establishes that all non-zero solutions of (2)

grow without bound when A + U(x)D has positive eigenvalues in this case. If (i)

2
holds and A + P(x)D has a zero eigenvalue for some x c R then system (2) has at

least one critical point distinct from the origin. If (i) holds and A + p(x)D

is bounded with non-zero eigenvalues whose signs agree with the real part of o(A)

then system (2) is either globally asymptotically stable according to Theorem 1, or

can be shown to admit only unbounded non-zero solutions. However, if (i) holds,

the spectrum of A + p(x)D is sign definite, but p(x) is not bounded, then D has

real eigenvalues and the possibility of a limit cycle remains. As will be seen

below, there is good reason to suspect that system (2) cannot support a limit

cycle unless D has complex conjugate eigenvalues. If true, this would imply that

the conditions of Theorem 2 are both necessary and sufficient for a quadratic

system (1) with a single critical point to support a limit cycle.
We now proceed to show that the limit cycle established by Theorem 2 is indeed

*. unique. Along the way we will restate the conditions of that theorem (Lemma 3,

below) and provide a better intuitive sense of the mechanism underlying the isolated

• periodic solution. This is achieved by a transformation to polar coordinates.

* . Assuming A has complex conjugate eigenvalues we may always find a coordinate

system (under linear transformation of the state) such that A - aI + wJ - where

1 0-0 -1

I , J , and a, w e R - and c Then, defining the

::', [Xl 2  2211/2,x/ ,

polar coordinate transformation p X + x2 A arc tan x2/x1, equation

(2) may be written as

- /p f T(x)x - [Cr + POd(e)I
.. , (3)

o - -f -., + pa(e)
x x
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where d and d are functions of e only and are defined by

T T T
d(e) -cos e xTD x  T(D) cog Tx

x x x x

.:" Under the assumptions of Theorem 2, d is sign definite for e e [-w/2,w/2] and we

assume, with no loss of generality, that sgn w = sgn d > 0. We define

n(e) a ad(e) - wd(e) and assert the following.

Lemma 3: The following conditions are equivalent to those stated in Theorem 2,

and hence are sufficient for the existence of a limit cycle of system (3):

either (i) a > 0 and < 0
for 0 c [-w/ 2 ,w/2]

or (ii) a < 0 and n > 0

Proof: Since A - aI + wJ, condition (i) of Theorem 2 is equivalent to one of the

sign conditions on a. From Lemma 2, the eigenvalues of A + u(x)D are given by

A(x) -IAx,Dxl - 1 (olxDxI + wiJx,Dxl) -- .- Thus, for e c [-l/ 2 ,l/ 2 1,.Dx,x - iDx,xl d
the sign conditiorson d and n are equivalent to condition (ii) of Theorem 2. 0

As reported in [8], limit cycles of quadratic differential equations enclose

convex regions, hence, any periodic solution of (3) must have an angular derivative,

A2e, of constant sign: no limit cycle may leave the region C {x O 1w + p > 01.

Consider x(t;po), a trajectory in C originating at p0 - a point on the negative x2-

axis. For some t2 > t 0 we must have x(t1 ;PO) - p1 - a point on the positive

x 2-axis; and x(t2 ;Po) - P2 - a point on the negative x2-axis - as depicted in

Figure 2. Denote the resulting curve in the right half plane over the interval

[Otl] as r1, and the left half plane curve, over the interval [tlt 2], as r2.

[ w Evidently, r2 may be expressed as x(s;p 1 ) where s e [0,t2-t1 ]. Now map r1 into

r 2 as follows: since 0 is sign-definite, for every t £ [O,t11 there exists a

unique s e [O,t 2-tI] and C > 0 such that,2'1

"*

x(s;p ) =-cx(t;p).
1 0



1p
t (s

r(t)

p 0

P 2

Figure 2



For convenience we shall denote points on the right hand curve, r1 , by r(t), and

on the left hand curve, r2 , by '(s), letting p = Vr(tE and X (s)I - Cp.

The chief advantage of this map is tte induced functional dependence of s on t,

hence the ability to write a differential equation for p and X using the same

* angular interval. From (4) and the above, we have, for fixed initial conditions,

d a + pd
a6 -

w + pd

6 ec[-wl2,w/2]. (4)
d la x _.- Ad
dO

The restatement of Theorem 2 In Lema 3 lends added insight into the mechanism by

which x(t;p0) grows and decays on rUr2 . Considering condition (i) of Lemma 3,
12

since od > 0 on [-w/ 2,w/2 ], the fact that n < 0 necessitates d > 0 on that interval.

Hence, from (4), while P must ncrease on Fl , X becomes negative when r2 enters
T 2

A2. x Dxthe region ( {x E R21 x, < - . } in the left half plane. Moreover, C has a
x x

l boundary, C, in the left half plane and n < 0 implies 3C c V - i.e. that certain

trajectories contained in C must enter 0. Since . A . -X as 1(s) * 3C, the
dO

growth of a trajectory on rI is countered with increasing effect on a portion of

F2, resulting in a limit cycle. Notice that if D has real eigenvalues then 3 is

* no longer sign definite, hence d may not be sign definite, and these remarks are no

longer valid, underscoring the importance of the requirement that D have complex

conjugate eigenvalues.

The differential equations in (4) define two families of functions, p(O;p ) and

A(0;x0), parametrized by initial condition on the negative and positive x2 -axes,

respectively. Observing that X0 U p(w/2;p O) and that the vector fields n (4) are

S. smooth when x e C, we may explicitly regard p and A as functions of 0 and p^,

continuously differentiable in both arguments. Since distinct Integral curves of

i i' "%i' i .ii i ii* i i................ . .... . . . ,
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autonomous systems defined by smooth fields remain distinct over all times, we have

* -w.- p > 0 and A > 0 for all e e[-w/2,r/2]. Hence, the function

o 3p0
A A(r/2,p0 )

which represents the ratio of the magnitudes of the end points of the curve r ur

(both on the negative x2-axis) is a continuously differentiable function of P0 .

Evidently, r UF is the integral curve of a limit cycle if and only if * = 1.
1 2

The proof of uniqueness involves a demonstration that * is monotone in p over

an interval of interest, and hence, may pass through I at most once. That demonstra-

tion depends upon the following computation.

* Corollary 3.1: Conditions (i) and (ii) of Lemma 3 respectively imply

-2[ L (n X) - O(4

' Proof: aa 2n( 2 *.o °o -/ 2. we have
ae 6 p p 0 0ap ap0  Na3po ap0

a n A + A I ax and -- (L I-Llnp o 2 !0__

aO. ( jjl + - 2 a nd ap 6 30 (w" d) 2 D0

Since > 0, we have W > 1, and + < 1, for all e c[-1/2,1/2]

Hence, if condition (i) of Lumma 3 holds then

____n < _ _ - L -n A, - o/w

(-)2 e - 6
(w-Xd) w Ad

and <-k- ....2 . - Ilnp - o/w,

( d) w + pd

since n • 0 on [-wf2,w/2] and substituting from (4).
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,.;.ax ap

Since- , >O, this implies
-. .

A < (2~ L A-X Aa < (2 ain - o/-)

aP0 e ae in 0w

yielding (i), above. The identical argument holds for (ii) with signs

;-.:. reversed, since in > 0.

• . We may now state the second principal result of this paper.

Theorem 3: Under the conditions of Theorem 2, system (2) has only one limit

cycle.

Proof: x(t;p0 ) is a limit cycle of (2) if and only if *(P0 ) - 1 in system (3).

According to Theorem 2, L = {p0 > 0 I*(P0)" 1} is non-empty, and bounded away from
* d

the origin, hence inf L exists and p0 >0. We will show that * is sign definite
* • dp0

for all p0 > p0 , hence x(t;po) is the only limit cycle of (2).

Note that d 1 - .(w/2, We will show below that under
0 o (ir/,po

condition (i) of Lema 3,

32 -2wo
X (v/2,po) < e

and hence dy

Since ONw > 0 and *(P0O) - 1, this is clearly negative for p0 > p0. Similarly,

under condition (ii) of Leuma 3 the inequalities are reversed, and O/N < 0

K' -.. so that- > >0 for all p0 > p0.

' To obtain the bound on (w/2,0 we recall that A(-w/2,p = lw12,0
ap0  0w2,o (-/, 0) p~ , 0)

and P(-w/2,p0 ) P 0 , hence

70 0
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_'_ ap [a)a

1-/2 ATp O (0,) -a-- (e,po)lde

Applying Corollary 3.1 to case (I) yields

I' a < ((w/2 A(W/2,p ) 2 alG/

In-0 (20 j w/22p_(-w/2 p0 )

2n -2 ro
a A (r/2= ) In2 - 2w a

hence -, as claimed. Case (ii) proceeds identically with

the signs reversed. 0

4. Conclusions:

This paper presents sufficient conditions for the existence of limit cycles

of quadratic systems with a unique equilibrium state. The conditions guarantee

that the limit cycle is unique. The results are based upon insights and techniques

developed during an earlier investigation of the global stability properties of (1)

[1], facilitated by the expression of that system in the form (2). They strongly

suggest that these conditions are necessary as well, hence, that no quadratic

system with a unique equilibrium state can support more than one limit cycle.

That result, the uniqueness of a limit cycle around any equilibrium state of (2),

* the relation of limit cycles of (2) to those supported by general quadratic systems

(1), all remain to be rigorously established.
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